Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction

نویسندگان

  • Leonid Bilevich
  • Leonid P. Yaroslavsky
چکیده

Convolution and correlation are very basic image processing operations with numerous applications ranging from image restoration to target detection to image resampling and geometrical transformation. In real time applications, the crucial issue is the processing speed, which implies mandatory use of algorithms with the lowest possible computational complexity. Fast image convolution and correlation with large convolution kernels are traditionally carried out in the domain of Discrete Fourier Transform computed using Fast Fourier Transform algorithms. However standard DFT based convolution implements cyclic convolution rather than linear one and, because of this, suffers from heavy boundary effects. We introduce a fast DCT based convolution algorithm, which is virtually free of boundary effects of the cyclic convolution. We show that this algorithm have the same or even lower computational complexity as DFT-based algorithm and demonstrate its advantages in application examples of image arbitrary translation and scaling with perfect discrete sinc-interpolation and for image scaled reconstruction from holograms digitally recorded in near and far diffraction zones. In geometrical resampling the scaling by arbitrary factor is implemented using the DFT domain scaling algorithm and DCT-based convolution. In scaled hologram reconstruction in far diffraction zones the Fourier reconstruction method with simultaneous scaling is implemented using DCT-based convolution. In scaled hologram reconstruction in near diffraction zones the convolutional reconstruction algorithm is implemented by the DCT-based convolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images

Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Improving the quality of images synthesized by discrete cosines transform – regression based method using principle component analysis

  Purpose: Different views of an individuals’ image may be required for proper face recognition.   Recently, discrete cosines transform (DCT) based method has been used to synthesize virtual   views of an image using only one frontal image. In this work the performance of two different   algorithms was examined to produce virtual views of one frontal image.   Materials and Methods: Two new meth...

متن کامل

Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks

The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...

متن کامل

Fast and Flexible High-Quality Texture Filtering With Tiled High-Resolution Filters

Current graphics hardware offers only very limited support for convolution operations, which is primarily intended for image processing. The input and output sample grids have to coincide, making it impossible to use these features for more general filtering tasks such as image or texture resampling. Furthermore, most hardware employs linear interpolation for texture reconstruction purposes, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010